Microbial Genetics

Image

Microbial genetics is a subject area within microbiology and genetic engineering. Microbial genetics studies microorganisms for different purposes. The microorganisms that are observed are bacteria, and archaea. Some fungi and protozoa are also subjects used to study in this field. The studies of microorganisms involve studies of genotype and expression system. Genotypes are the inherited compositions of an organism. Genetic Engineering is a field of work and study within microbial genetics. The usage of recombinant DNA technology is a process of this work. The process involves creating recombinant DNA molecules through manipulating a DNA sequence. That DNA created is then in contact with a host organism. Cloning is also an example of genetic engineering.

Microbes are ideally suited for biochemical and genetics studies and have made huge contributions to these fields of science such as the demonstration that DNA is the genetic material, that the gene has a simple linear structure that the genetic code is a triplet code, and that gene expression is regulated by specific genetic processes. Jacques Monod and François Jacob used Escherichia coli, a type of bacteria, in order to develop the operon model of gene expression, which lay down the basis of gene expression and regulation. Furthermore, the hereditary processes of single-celled eukaryotic microorganisms are similar to those in multi-cellular organisms allowing researchers to gather information on this process as well. Another bacterium which has greatly contributed to the field of genetics is Thermus aquaticus, which is a bacterium that tolerates high temperatures. From this microbe scientists isolated the enzyme Taq polymerase, which is now used in the powerful experimental technique, Polymerase chain reaction (PCR). Additionally the development of recombinant DNA technology through the use of bacteria has led to the birth of modern genetic engineering and biotechnology.

Using microbes, protocols were developed to insert genes into bacterial plasmids, taking advantage of their fast reproduction, to make biofactories for the gene of interest. Such genetically engineered bacteria can produce pharmaceuticals such as insulin, human growth hormone, interferons and blood clotting factors. These biofactories are typically much cheaper to operate and maintain than the alternative procedures of producing pharmaceuticals. They're like millions of tiny pharmaceutical machines that only require basic raw materials and the right environment to produce a large amount of product. The utilization of incorporating the human insulin gene alone has had profound impacts on the medical industry. It is thought that biofactories might be the ultimate key in reducing the price of expensive lifesaving pharmaceutical compounds.

Media Contact:

Alina Grace
Managing Editor
Microbiology: Current Research
Email: aamcr@alliedacademies.org